An Improved Synthesis of Chacotriose

Vincent Lequart, Gérard Goethals, Joseph Banoub,[†] Pierre Villa, and Patrick Martin*^{††}

Laboratoire des Glucides, Université de Picardie Jules Verne, F-80039

[†]Department of Biochemistry, Memorial University, St John's, Canada

^{††}Laboratoire de la Barrière Hémato Encéphalique, Université d'Artois-Institut Pasteur de Lille, F-62307

(Received January 7, 2004; CL-040028)

Glycosylation using the trichloroacetimidate method was investigated in order to synthetize chacotriose. In a continuation of previous studies we present here a shorter approach to the synthesis of chacotriose, α -L-rhamnopyranosyl-(1 \rightarrow 2)-[α -L-rhamnopyranosyl-(1 \rightarrow 4)]-D-glucopyranose.

The precise molecular structure of chacotriose represents a typical structural pattern of steroidal glycoalkaloids,¹ with a β -D-glucopyranosyl group as the first sugar attached to a steroid, which in turn is glycosylated with two α -L-rhamnopyranose units substituted at the 2- and 4-positions. The many properties of the glycosteroids^{2–5} and the difficulty of obtaining them in great quantity drew our attention. In a previous publication,⁶ we described the preparation of the peracetylated chacotriose, while herein we report an improved approach to the synthesis of this type of trisaccharide.

The previous synthesis of peracetylated chacotriose⁶ consisted of 13 steps starting from 1,2:5,6-di-*O*-isopropylidene- α -D-glucofuranose.⁷ We initially undertook to reduce this number, particularly in the preparation of glycosyl acceptor. The strategy adopted was to partially protect the glucose unit leaving only the 2- and 4-hydroxy groups available for the glycosylation reaction with the two L-rhamnopyranose units.

Table 1. Preparation of glycosyl acceptor

Compound 4 was prepared in 3 steps (Table 1) starting from 1,2:5,6-di-*O*-isopropylidene- α -D-glucofuranose 1.⁷ Compound 2 was prepared by condensing 1 with benzyl bromide⁸ in 83% yield. Removal of the isopropylidene groups with 3:2 AcOH-H₂O followed by selective protection of the anomeric hydroxyl with benzyl alcohol in the presence of acetyl chloride⁹ afforded compound 3 (71% yield). Position 6 was then selectively protected with pivaloyl chloride¹⁰ in pyridine to give the benzyl 3-*O*-benzyl-6-*O*-pivaloyl- α -D-glucopyranoside 4 in 82% yield.

The 2- and 4-hydroxy groups of glucose acceptor **4** were glycosylated (Table 2) following two methods: either with 2,3,4-tri-*O*-acetyl- α -L-rhamnopyranosyl bromide (**5**)¹¹ by using AgOTf as promoter,¹² or with the 2,3,4-tri-*O*-acetyl- α -L-rhamnopyranosyl trichloroacetimidate (**6**)¹³ by using BF₃–Et₂O as promoter¹⁴ to give the fully protected chacotriose **7a**. The vari-

ous attempts showed that the proportion of disaccharide **8** is important except when using the BF_3 – Et_2O at a temperature of -60 °C (Entry 4).

 Table 2. Regiospecific glycosylation of compound 4

^a AgOTf was used. ^b BF₃ Et₂O was used.

Glycosylation of glucose derivative **4** with 2,3,4-tri-*O*-acetyl- α -L-rhamnopyranosyl bromide (**5**)¹¹ in the presence of AgOTf by the method of Hanessian and Banoub¹² mainly provided the desired di-*O*-glycosylated product **7a** (45% yield). However the disaccharide 4-*O*-glycosylated product **8** was also obtained in 27% yield while no 2-*O*-glycosylated product was isolated. The ¹³C NMR spectrum of **8** showed two anomeric carbons at δ 100.2 and 97.1 ppm and a HMBC experiment indicated a correlation between C-1 of the rhamnose unit and H-4 of the glucose unit indicating (1 \rightarrow 4) glycosylation in **8**.

To increase the yield, we have used another glycosylation method described by Schmidt.¹⁴ Glycosylation of diol **4** with 2,3,4-tri-*O*-acetyl- α -L-rhamnopyranosyl trichloroacetimidate (**6**)¹³ under the promotion of BF₃–Et₂O (Table 2, Runs 2–4) provided a mixture of tri and disaccharide (**7a** and **8**, respectively). As the temperature was decreased, the yield of the 4-*O*-glycosylated product diminished until, at -60 °C, we did not observe the disaccharide and we obtained the desired protected chacotriose¹⁵ in 74% yield.

Protected trisaccharide **7a** was treated with hydrogen in the presence of Pd/C (10%) to give **7b** and then with NaOH to remove the benzyl and acetyl groups and subsequently acetylated to give the desired peracetylated chacotriose **7c**.¹⁶

In conclusion, we have devised an improved method for the synthesis of chacotriose starting from the 1,2:5,6-di-O-isopropylidene- α -D-glucofuranose with a total yield of 17%. In order to establish structure-activity relations, our objective is now to synthesize some chacotriose analogues.

References and Notes

- H. Ripperger and K. Schreiber, The Alkaloids, Academic Press, New York (1981), Vol. 9, p 81.
- K. W. Kuo, S. H. Hsu, Y. P. Li, W. L. Lin, L. F. Liu, L. C. Chang, C. C. Lin, C. N. Lin, and H. M. Sheu, Biochem. Pharmacol., 60, 1865 (2000).
- J. G. Roddick, M. Weissenberg, and A. L. Leonard, 3 Phytochemistry, 56, 603 (2000).
- B. E. Cham and B. Daunter, Cancer Lett., 55, 221 (1990). 4
- T. Ikeda, H. Miyashita, T. Kajimoto, and T. Nohara, 5 Tetrahedron Lett., 42, 2353 (2001); Y. Du, G. Gu, G. Wei, Y. Hua, and R. J. Linhardt, Org. Lett., 5, 3627 (2003).
- M. Morillo, V. Lequart, E. Grand, G. Goethals, A. Usubillaga, P. Villa, and P. Martin, Carbohydr. Res., 334, 281 (2001).
- I. Regnault, P. Villa, and G. Ronco, Fr. Patent 89 15985 7 (1989).
- 8 P. Y. Goueth, G. Ronco, and P. Villa, J. Carbohydr. Chem., 13. 679 (1994).
- 9 K. Takeo, M. Nahagen, Y. Taramoto, and Y. Nitta, Carbohydr. Res., 201, 261 (1990).
- 10 L. Jiang and T. K. Chan, J. Org. Chem., 63, 6035 (1998).
- 11 R. K. Ness, Jr., H. G. Fletcher, and C. S. Hudson, J. Am. Chem. Soc., 73, 296 (1951).
- 12 S. Hanessian and J. Banoub, Adv. Chem. Ser., 39, 36 (1976).
- 13 C. Li, B. Yu, and Y. Hui, J. Carbohydr. Chem., 18, 1107 (1999).
- 14 R. R. Schmidt and W. Kinzy, Adv. Carbohydr. Chem. Biochem., 50, 21 (1994).
- 15 Benzyl-2,3,4-tri-O-acetyl- α -L-rhamnopyranosyl- $(1 \rightarrow 2)$ -

445

 $[(2,3,4-tri-O-acetyl-\alpha-L-rhamnopyranosyl-(1\rightarrow 4)]-3-O-ben$ zyl-6-*O*-pivaloyl- α -D-glucopyranoside (7a): white solid. 74% yield. mp 91–95 °C; $[\alpha]_D^{26}$ –5.7° (c 1.0, CHCl₃); ¹H NMR (300 MHz, CDCl₃): δ glucose 4.98 (d, 1H, $J_{1,2} =$ 3.4 Hz, H-1), 4.91, 4.32 (2d, 2H, CH2-Ph), 4.76, 4.55 (2d, 2H, CH_2 -Ph), 4.45 (dd, 1H, $J_{5,6a} = 2.2$ Hz, $J_{6a,6b} =$ 12.4 Hz, H-6a), 4.22 (dd, 1H, $J_{5,6b} = 3.3$ Hz, H-6b), 4.01 (t, 1H, $J_{3,4} = 9.3$ Hz, H-3), 3.90 (m, 1H, H-5), 3.78 (t, 1H, $J_{4,5} = 9.1 \,\text{Hz}, \text{H-4}$, 3.71 (dd, 1H, $J_{2,3} = 9.6 \,\text{Hz}, \text{H-2}$), 2.21-2.03 (3s, 9H, CH₃), rhamnose 5.32 (dd, 1H, $J'_{3,4} = 10.0 \text{ Hz}, \text{ H'-3}, Rh (1 \rightarrow 2)), 5.23 \text{ (m, 2H, } J'_{2,3} =$ $3.5 \text{ Hz}, J''_{3.4} = 9.2 \text{ Hz}, \text{ H}'-2, \text{ H}''-3), 5.16 \text{ (d, 1H, } J''_{2.3} =$ 3.4 Hz, H"-2, $Rh(1\rightarrow 4)$), 5.03 (t, 1H, $J'_{4,5} = 9.9$ Hz, H'-4), 5.00 (t, 1H, $J''_{4.5} = 9.7$ Hz, H''-4), 4.96 (m, 2H, H'-1, H"-1), 4.06 (m, $J'_{5,6} = 6.1$ Hz, H'-5), 3.70 (m, 1H, $J''_{5,6} =$ 6.4 Hz, H"-5), 1.32-1.21 (6s, 18H, CH₃), 1.00 (d, 3H, H"-6), 0.92 (d, 3H, H'-6); ¹³C NMR (75 MHz, CDCl₃): δ glucose 170.3-169.0 (CO-), 139.2-127.6 (Ph), 100.3 (C-1), 81.1 (C-3), 79.6 (C-2), 76.1 (C-4), 76.0 et 69.8 (CH2-Ph), 69.1 (C-5), 62.6 (C-6), 39.3 (CMe₃), 27.6 (CMe₃), rhamnose 97.2, 97.1 (C-1'), 71.1 (2 C-4), 70.2, 70.0, 69.9, 69.3 (C-2, C-3), 67.7, 67.3 (C-5), 22.0, 21.9 (CH₃-CO), 17.7, 17.5 (C-6). Anal. Calcd for C₄₉H₆₄O₂₁ (989.54): C, 59.51, H, 6.52. Found: C, 59.47, H, 6.50.

16 2,3,4-Tri-O-acetyl- α -L-rhamnopyranosyl- $(1\rightarrow 2)$ -[2,3,4tri-O-acetyl- α -L-rhamnopyranosyl- $(1 \rightarrow 4)$]-1,3,6-tri-O-acetyl-D-glucopyranose (7c):. white solid. 79% yield (α/β 2:1); mp 95–98 °C; $[\alpha]_D^{25}$ +1.5° (c 1.1, CHCl₃), ESI-Q-TOF-MS and ESI-Q-TOF-MS-MS: $[M+Na]^+ m/z$ 874, [M + Na -AcOH]⁺ m/z 814, [M + Na - 2AcOH]⁺ m/z 754, [M + Na - 2AcOH - $C_{12}H_{16}O_7$]⁺ m/z 482, [M + Na - AcOH - $C_{12}H_{16}O_7$]⁺ m/z 542. Anal. Calcd for $C_{36}H_{50}O_{23}$ (850.78): C, 50.82, H, 5.92. Found: C, 50.76, H, 5.89%.